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Abstract

The influence of a source of poloidal momentum on the collisionless tokamak scrape-off layer (SOL) is investigated.

The solutions of the kinetic equation for ion flow and the corresponding system of fluid equations assuming zero ion

heat flux are compared. The two models agree quite well for small poloidal Mach numbers of the momentum source,

and for larger Mach numbers near the target towards which the drift is directed. At the other target the agreement is

poor because the kinetic heat flux dominates energy transport near the stagnation point. The kinetic model yields

smooth solutions for any value of poloidal drift. The fluid model breaks down at a particular supersonic poloidal Mach

number due to the appearance of a singularity on the domain. The failure of the fluid model does not represent a real

detachment, but is simply a mathematical artefact caused by the truncation of the series of fluid moment equations.

� 2004 Published by Elsevier B.V.
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1. Introduction

Simple one-dimensional (1D) analysis of the toka-

mak scrape-off layer (SOL) is valuable in that it gives

intuitive insight into the complex phenomena that can

occur [1]. Despite their obvious usefulness for validating

fluid models, kinetic solutions of the simple SOL prob-

lem are rare [2], and none exist for the problem with

poloidal drifts. This problem is of interest because even

a small poloidal drift having low Mach number can

compete with the poloidal projection of sonic parallel

flow at the plasma-sheath interface [3]. Simple consider-

ations have led to the formulation of the Bohm–Cho-
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dura boundary condition which states that the

poloidal projection of the fluid velocity must be at least

equal to the poloidal projection of the parallel ion sound

speed [4]. As a result the parallel flow speed is supersonic

for a drift directed away from the target, and subsonic

for a drift directed towards the target. This seems to

cause problems for 2D fluid codes, however, and ad

hoc boundary conditions are sometimes imposed in or-

der to circumvent numerical problems. Given the impor-

tance of the boundary conditions in determining the

overall behaviour of the SOL, it is clearly of interest to

delve into the basic physics governing this problem.

Chung and Hutchinson [5] solved the kinetic equation

for a Mach probe in a semi-infinite plasma with parallel

flow, and confirmed the results of a simpler isothermal

fluid calculation. In Section 2 of this paper we will apply

their collisionless kinetic equation to the bounded SOL
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with drifts. The solution of the corresponding fluid

mass, momentum, and energy transport equations is de-

scribed in Section 3. The kinetic and fluid solutions are

compared in Section 4, with particular attention paid

to the boundary conditions. The main results are sum-

marized in Section 5.
2. Kinetic model

All the physical quantities appearing in this paper are

expressed in dimensionless units (see Table 1). The SOL

is treated as a thin slab interfacing via a magnetic separ-

atrix to a semi-infinite, spatially uniform source plasma.

The system is bounded by two target plates separated by

poloidal length Lh. The magnetic field lines lie in the /–h
plane making an angle a with the toroidal direction. The

toroidal gradients are zero. Radial gradients will be

approximated by source terms. We seek the equilibrium

poloidal profile of the phase space density f(xh,vh) which

is governed by the stationary collisionless Vlasov

equation

vh
of
oxh

þ Eh
of
ovh

¼ W ðxhÞ½f0ðvh; V RÞ � f ðxh; vhÞ�: ð1Þ

The ion speed is the sum of the poloidal projections of

the parallel velocity (unique to each ion) plus a perpen-

dicular drift velocity (the same for all ions) vh = vksi-

na + V?cosa, where V? could be a poloidal ~Er �~B
drift. Quasineutrality is imposed, and the self-consistent

poloidal electric field is given by the Boltzmann relation

for isothermal electrons Eh = �(dn/dxh)/n. We make this

approximation in order to be able to compare with the

equivalent fluid model later on, and in any case it is rea-

sonable to neglect the sheath which can usually be con-

sidered as sourceless, collisionless, and very thin in

tokamaks (sheath thickness �0.1mm compared to

poloidal circumference �5m). We adopt the volumetric

source term of Chung and Hutchinson [5] where

f0(vh,VR) is a shifted Maxwellian distribution with tem-

perature T0
Table 1

Normalization of the pertinent physical quantities

Physical quantity Normalization (MKS units)

Electric charge Unit charge e (1.6 · 10�19C)

Mass Ion mass mi (kg)

Energy Source electron thermal energy kTe (J)

Distance Poloidal length Lh (m)

Speed Poloidal projection of cold ion sound

speed ce ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kT e=mi

p
sin a (ms�1)

Time Poloidal ion transit time Lh/cesina (s)

Density Source plasma density n0 (m
�3)
f0 ¼
1ffiffiffiffiffiffiffiffiffiffiffi
2pT 0

p exp �ðvh � V RÞ2

2T 0

 !
: ð2Þ

The key parameter in this study is what we call the �rela-
tive� poloidal speedVR = Vk0sina + V?cosa of the source
plasma with respect to the target plates, where Vk0 is

an arbitrary parallel drift speed of the source plasma.

It is easy to see that the solution of Eq. (1) f(xh,vh) in

a phase space (xh,vh) in which we absorb the drift com-

ponent V?cosa into the source term f0(vh,VR) is identi-

cal to f(xh,vksina) in which the source term would be

f0(vk,Vk0sina) and the SOL poloidal drift is explicitly

accounted for by shifting the characteristics along the

vk-axis by an amount �V?cosa. There is no difference

between the influence of a momentum source due to a

poloidal drift in the SOL, and viscous coupling with a

parallel flow in the core plasma (at least in slab geome-

try). The source term represents the exchange of ions be-

tween the two regions at a characteristic frequency

W(xh) that can have an arbitrary spatial variation and

satisfies
R Lh=2
�Lh=2

dxhW ðxhÞ ¼ 1. Allowing the frequency to

vary in space is a convenient alternative to non-linear

grid spacing. In the usual case when W = 1, as imposed

by our choice of normalization, the spatial derivatives of

all the fluid quantities become formally infinite at the

boundaries, and using a variable grid spacing is one

way to deal with the numerical difficulties near the sin-

gularities. On the other hand, keeping a uniform spatial

grid but choosing W(xh =±Lh/2) = 0 eliminates the sin-

gularity and allows the solution to proceed gently to

the wall with all gradients tending to zero. For this study

we use W(xh) = 1 + cos(2pxh). This is equivalent to a

coordinate transformation. After the solution is ob-

tained, it is simple to map xh into a space x0h where

W = 1:
R x0

h
�Lh=2

dx0h ¼
R xh
�Lh=2

dxhW ðxhÞ. We take the sign

of VR to be positive and refer to the target at xh =

+Lh/2 towards which the drift is directed as �active�,
and the other one at xh = �Lh/2 as �inactive�. The solu-

tion of Eq.(1) begins by imposing an Eh with the follow-

ing properties. Near the inactive target Eh < 0 and near

the active target Eh > 0, consistent with ion acceleration

from a stagnation point somewhere in the SOL. At both

targets Eh = 0 because of our choice of W(xh). The char-

acteristics of motion along which f is convected describe

the ion trajectories through phase space. Eq. (1) is inte-

grated starting at one of the targets as time advances.

The initial conditions are f(xh = �Lh/2,vh > 0, t = 0) = 0

and f(xh = +Lh/2,vh < 0, t = 0) = 0. The integration is

carried forward until the characteristic intersects one

of the targets (Fig.1). Roughly 500–1000 characteristics

must be integrated in order to sufficiently map out f.

The point where Eh changes sign is the X-point of a

separatrix. Ions never move from the X-point and at

equilibrium the solution there is simply f = f0. A charac-

teristic that originates from the inactive target will return

there if its initial speed lies below the upper branch of the



Fig. 1. The gray shading indicates contours of constant f for

T0 = 2, VR = 1. There are eight equally spaced contour levels

between f = 0 (white) and the maximum value for this case

f = 0.227 (dark gray). The active target is the one towards which

is VR directed. The maximum n occurs at the X-point where

vh = 0 and Eh = 0. In this particular case the stagnation point of

the poloidal fluid flow hvhi = 0 lies at xh = �0.14. The four

classes of characteristics (full curves) and the separatrix (dashed

curve) are shown.
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separatrix. Otherwise it terminates on the opposite

target. The characteristics that are the branches of the

separatrix itself only intersect one target; they approach

the X-point asymptotically. The branch that starts at the

X-point and flows towards the targets has special

properties; we refer to it as the �return branch�. The n

is calculated on a regular spatial grid with typically

100–200 points to obtain E�
h. The Eh used for iteration

i is relaxed to the next iteration i + 1 following the

scheme Eiþ1
h ¼ ð1� eÞEi

h þ eE�
h where we take e = 0.05.

The calculation converges after about 30 iterations.

The general features of the solution are illustrated in

Fig. 1 for T0 = 2 and VR = 1. The X-point where n peaks

is driven towards the active target by the asymmetry of

the source. The poloidal stagnation point where hvhi = 0

lies somewhere between the inactive target and the X-

point except for the symmetric case VR = 0 when the

stagnation point and the X-point coincide. For super-

sonic VR most of the ions are born with such large vR
that their characteristics are only slightly deviated by

the Eh; the active target distribution is similar to the

one that would arise from a ballistic calculation where

Eh = 0 and all the characteristics are horizontal lines.

There are always some ions born in the wings of the

source distribution. Those ions populate the longest

characteristics that flow from the inactive target to the

X-point and back again and give rise to a narrow stream

near the return branch of the separatrix. There appears

to be no limit to the magnitude of VR. As VR is in-

creased, n drops because the average dwell time in the

SOL becomes very short. The X-point moves asymptot-

ically close to the active target, but never actually
touches it. Likewise, the stagnation point moves towards

the inactive target. In contrast to the prediction of the

simplified fluid model, smooth solutions are obtained

for all values of VR; no evidence of sudden detachment

[1, p. 552] nor any abrupt change in the qualitative nat-

ure of the solution appears. In the next section we devel-

op the system of exact fluid equations that describes this

physical model.
3. Fluid model

Taking the first three moments of Eq. (1) we obtain

the following system of fluid equations for n, the poloi-

dal flow speed Vh, and the kinetic �temperature� T:

dn
dxh

¼ W
3V 2

h � 3V RV h þ V 2
R � 3T þ T 0 þ nð2T � V 2

hÞ
V hðV 2

h � 1� 3T Þ
;

ð3Þ

dV h

dxh
¼ W

nð1þ T Þ � 1� T 0 � ð2V h � V RÞðV h � V RÞ
nðV 2

h � 1� 3T Þ
;

ð4Þ

dT
dxh

¼W
½T 0þðV h�V RÞ2�ðV 2

h�1Þþ ½ð3�2nÞð1þT Þ�V 2
R�T 0�T

nV hðV 2
h�1�3T Þ

;

ð5Þ

where we set the ion heat flux density q = nh(vh � Vh)
3i/

2 = 0. The term in parentheses in each of the denomina-

tors is the Bohm–Chodura singularity. We divide the n

and T equations by the Vh equation to eliminate xh.

The two new equations for n(Vh) and T(Vh) are inte-

grated starting at the poloidal stagnation point Vh = 0,

which is also a singularity. The only way that n and T

can be finite and continuous there is if the numerators

tend to zero. That condition imposes a relationship be-

tween those two quantities. For a chosen initial n, the

corresponding T is uniquely determined, and the initial

slopes can be obtained using l�Hôpital�s rule. The equa-

tions are integrated towards both targets until the Mach

number Mh ¼ V h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3T

p
becomes unity. The flow

equation is then inverted to solve for x(Vh). The initial

n and T must be chosen such that Lh = 1, with the

Bohm–Chodura singularities lying precisely at the tar-

gets. These two boundary conditions, plus the require-

ment of smooth profiles, are the three physical

constraints that determine the unique solution. They

cannot be chosen freely, but are furnished by the fluid

equations themselves [6]. The solution procedure in-

volves iterating to find the correct stagnation point pres-

sure that makes the final solution fit between the targets.

The present solution differs slightly from the bounded

isothermal SOL model of Hutchinson [7] in which he im-

posed a value for the density at a specific point and cal-

culated the resulting system length as a variable.
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Fig. 3. Normalized target plate plasma parameters as a

function of poloidal drift VR for T0 = 2.0. The display scheme

is the same as Fig. 2. In panel (c), the separatrix speed and the

drift speed are indicated by dotted curves.

J.P. Gunn / Journal of Nuclear Materials 337–339 (2005) 310–314 313
When the numerator of Eq. (4) becomes zero, a sin-

gularity appears in the SOL and the fluid solution breaks

down. This occurs for large VR. This is the same sort of

singularity that causes the simple isothermal fluid model

to fail. In that case, its occurrence (at VR = 2.0) coin-

cides with the disappearance of n from the inactive tar-

get, leading to the speculation that some sort of

abrupt detachment occurs [1, p. 552]. In the case of

the 3-moment equations all the plasma parameters re-

main finite and solutions can be found until much higher

VR, for example up to VR ’ 4 with T0 = 2. We propose

that this limit has no physical significance but is rather a

mathematical artefact caused by the truncation of the

series of fluid equations. Presumably if higher fluid mo-

ments were retained, the range of VR for which solutions

can be found would increase. Given an arbitrarily large

VR, there is no physics in this one-dimensional, collision-

less model that prevents stable solutions from existing.

Whether or not such large values of drift really occur

self-consistently in tokamaks needs to be addressed by

fully two-dimensional calculations including electric cur-

rent circulation.
4. Comparison of kinetic and fluid calculations

Poloidal profiles calculated by the kinetic and fluid

equations are compared in Fig. 2 for T0 = 2 and for

VR = 0 and 1.6. The plasma parameters at the targets,

denoted by subscript �t� are shown in Fig. 3 as a function

of VR. The solutions behave the same way for other val-

ues of T0. Let us summarize the main features of the ki-
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Fig. 2. Poloidal profiles of normalized (a) density, (b) poloidal

flux, (c) poloidal flow speed, (d) poloidal flowMach number, (e)

ion temperature, and (f) ion pressure for source temperature

T0 = 2.0 calculated by kinetic (full curves) and fluid (dashed

curves) models. The curves that are symmetric and asymmetric

with respect to xh = 0 correspond respectively to VR = 0 and

1.6.
netic results and the differences between them and the

fluid results.

When VR = 0 the SOL is poloidally symmetric about

xh = 0. n decreases by roughly 1/2 between the stagna-

tion point and the targets due to the acceleration of

the ions. When a source of momentum is present

(VR 5 0) the density peak is pushed towards the active

target and the stagnation point towards the inactive tar-

get. For moderate VR the inactive nt decreases while

increasing at the active target. For supersonic VR the ac-

tive nt rolls over and decreases steadily due to the smaller

ion dwell time. The kinetic and fluid calculations agree

quite well, although n is slightly underestimated near

the inactive target.

The effect of VR on the flux Ch is simply to offset the

poloidal profile with relatively little change of its overall

shape. For large VR when the stagnation point is just in

front of the inactive target, almost all the flux goes to the

active target. The kinetic and fluid calculations agree al-

most perfectly for all VR.

For low VR the classical picture of ion acceleration

up to the sound speed is roughly confirmed by the ki-

netic calculations. The fluid Vt is somewhat higher than

the kinetic value near the inactive target for large VR but

in good agreement everywhere else in the SOL. Kinetic

effects govern Vt at supersonic VR beyond which the

fluid solutions break down. At the active target we have

Vt ! VR. Onto the inactive target flows a cold beam of

ions along the return branch of the separatrix. Their

speed is therefore largely determined by the poloidal

density gradient via Boltzmann�s relation. It should be

stressed here that we are modelling the total poloidal flow

speed which includes the poloidal drift plus the parallel

flow. To obtain the parallel flow from these results one

just has to subtract VR from Vh. For large negative VR
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the parallel flow becomes hypersonic. This does not pose

any problem at all, even for the fluid model.

This comparison is of particular interest because we

are in effect calculating the true fluid boundary condi-

tions as a simple output of the kinetic model, and com-

paring with the theoretical fluid Mach number as

extracted from the target plate singularities. In order

to have a familiar point of reference we have calculated

the local ion sound speed from the kinetic T profiles to

define a Mach number Mh ¼ V h=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3T

p
. For low to

moderate VR, in the SOL and near the active target

the kinetic and fluid calculations agree fairly well

although the kinetic Mh is slightly less than 1. In all

other conditions it is very large. The kinetic effects men-

tioned in the previous paragraph dominate.

For low VR the Tt is lower than in the SOL due to the

acceleration. Both kinetic and fluid models agree in that

VR pushes the n peak towards the active target, while

pushing the T peak towards the inactive target. As VR

increases, Tt at the active target increases and saturates

close to T0. The fluid model reproduces the increase,

but not the saturation which is a kinetic effect. At the

inactive target, however, for all VR, the fluid model fails

completely. The kinetic model predicts a continuous de-

crease of Tt whereas the fluid model gives the opposite.

The low kinetic Tt is the origin of the high Mh.

The kinetic pressure behaves like n. The agreement

between the fluid and kinetic calculations is poorer due

to the problems with T.
5. Discussion and conclusion

The kinetic equation that we solve is mathematically

identical to that of Chung and Hutchinson [5]. What is

new here is its application to a bounded SOL, the dem-

onstration of the equivalence between the two types of

momentum source, and the detailed comparison with

the fluid equations. The fluid model is quite faithful to

the kinetic model in the SOL and near the active target

for low to moderate VR (i.e. for values that are observed

in tokamaks). However, it breaks down near the inactive

target. By identifying the main features of the kinetic

solution in this region we can hope to gain some insight

into why the two models disagree so strongly. The three

components of the total ion energy flux density

nhv3hi=2 ¼ qþ 3V hp=2þ nV 3
h=2 are shown in Fig. 4 for

VR = 1.6. q is relatively small near the active target

where the agreement is good, but it dominates in the

vicinity of the energy flux stagnation point hv3hi ¼ 0

where the kinetic and fluid models diverge from one an-

other. By definition q carries 100% of the power flux at

the flow stagnation point hvhi = 0. If we were to expand

our fluid hierarchy to include higher order transport

equations, maybe better agreement would be found.

Furthermore, with each new equation, the Bohm–Cho-
dura singularity would evolve to take account of the

higher moments, and perhaps the Mach number derived

from the kinetic solution would tend to unity over a

broader range of VR. For example, the determinant of

the system that includes the heat flux transport equation

gives rise to a more refined version of the Bohm–Cho-

dura singularity nV4 � nV2 + 8Vq � 3p = 0 which re-

duces to the more familiar 3-moment singularity in the

limit of small q. We note that the poloidal momentum

source, whether it is provided by SOL cross-field drifts

or viscous coupling with parallel flow in the core, does

not explicitly affect the boundary conditions for the total

poloidal flow in the sense that it does not appear in the

ion sound speed as defined by the singularity. The rea-

son is that the poloidal drift VR appears only in the

source terms; it is completely dissociated from the poloi-

dal divergence terms in the equations.
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